On Groups which Act Freely on Vector Bundles Over Spheres

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Finite Groups Act Freely on Spheres?

For those who know about group cohomology will know that if a group acts freely on sphere, then it has periodic cohomology. Now the group Zp×Zp does not have periodic cohomology, (just use the Künneth formula again) therefore it cannot act freely on any sphere. For those who do not know about group cohomology a finite group having periodic cohomology is equivalent to all the abelian subgroups b...

متن کامل

Most Rank Two Finite Groups Act Freely on a Homotopy Product of Two Spheres

A classic result of Swan states that a finite group G acts freely on a finite homotopy sphere if and only if every abelian subgroup of G is cyclic. Following this result, Benson and Carlson conjectured that a finite group G acts freely on a finite complex with the homotopy type of n spheres if the rank of G is less than or equal to n. Recently, Adem and Smith have shown that every rank two fini...

متن کامل

Qd(p)-FREE RANK TWO FINITE GROUPS ACT FREELY ON A HOMOTOPY PRODUCT OF TWO SPHERES

A classic result of Swan states that a finite group G acts freely on a finite homotopy sphere if and only if every abelian subgroup of G is cyclic. Following this result, Benson and Carlson conjectured that a finite group G acts freely on a finite complex with the homotopy type of n spheres if the rank of G is less than or equal to n. Recently, Adem and Smith have shown that every rank two fini...

متن کامل

Line bundles on quantum spheres

The (left coalgebra) line bundle associated to the quantum Hopf fibration of any quantum two-sphere is shown to be a finitely generated projective module. The corresponding projector is constructed and its monopole charge is computed. It is shown that the Dirac q-monopole connection on any quantum two-sphere induces the Grassmannian connection built with this projector.

متن کامل

Vector Bundles over Classifying Spaces of Compact Lie Groups

The completion theorem of Atiyah and Segal [AS] says that the complex K-theory group K(BG) of the classifying space of any compact Lie group G is isomorphic to R(G)̂ : the representation ring completed with respect to its augmentation ideal. However, the group K(BG) = [BG,Z × BU ] does not directly contain information about vector bundles over the infinite dimensional complex BG itself. The purp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1979

ISSN: 0002-9939

DOI: 10.2307/2042764